【题解】怪盗基德的滑翔翼
【题目描述】
怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。初始时,怪盗基德可以在任何一幢建筑的顶端。他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?
【输入描述】
输入数据第一行是一个整数K(K<100),代表有K组测试数据。
每组测试数据包含两行:第一行是一个整数N(N<100),代表有N栋建筑。第二行包含N个不同的整数,每一个对应一栋建筑的高度h(0<h<10000),
按照建筑的排列顺序给出。
【输出描述】
对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。
【样例输入】
3 8 300 207 155 299 298 170 158 65 8 65 158 170 298 299 155 207 300 10 2 1 3 4 5 6 7 8 9 10
【样例输出】
6 6 9
【题目分析】
这个过程可以用下面的图来形容,怪盗基德假如站在最高点。
分类讨论一下,怪盗基德不一定往哪个方向走,如果往左逃跑时,满足要求的情况是越来越低(从左往右看是越来越高)。
如果往右逃走,满足要求也是越来越低,从左往往右看是越来越低。
那么,也就是,向左跑的时候是最大上升子序列。向右跑时,是最大下降子序列。
【参考答案】
#include<iostream> #include<cstdio> #include<algorithm> #define N 1001 #define INF 0x3f3f3f3f using namespace std; int a[N],f[N]; int main() { int t; cin >> t; while(t--) { int n; cin >> n; for(int i = 1;i <= n;i++) cin >> a[i]; int maxx1 = -INF,maxx2 = -INF; for(int i = 1;i <= n;i++) //从做左往右最长上升子序列 { f[i] = 1; //初值长度为1 for(int j = 1;j < i;j++) if(a[j] > a[i] && f[j] + 1 > f[i]) f[i] = f[j] + 1; maxx1 = max(maxx1,f[i]); } for(int i = n;i >= 1;i--)//从做右往左最长上升子序列 { f[i] = 1; //初值长度为1 for(int j = n;j > i;j--) if(a[j] > a[i] && f[j] + 1 > f[i]) f[i] = f[j] + 1; maxx2 = max(maxx2,f[i]); } int res = max(maxx1,maxx2);//最大下降子序列即为maxx1,求最大上升子序列即为maxx2,两者比较后输出最大的一个数即可 cout << res << endl; } return 0; }
(adsbygoogle = window.adsbygoogle || []).push({});