当前位置:首页 > 题解目录 > 正文内容

分数求和

亿万年的星光5年前 (2021-01-28)题解目录2544

题目描述】

输入n个分数并对他们求和,并用最简形式表示。所谓最简形式是指:分子分母的最大公约数为1;若最终结果的分母为1,则直接用整数表示。
如: 5/6  、 10/3  均是最简形式,而3/6要化简为1/2, 3/1要化简为3。分子和分母均不为0,也不为负数。

【输入描述】

第一行是一个整数n,表示分数个数,1≤n≤10;
接下来nn行,每行一个分数,用”p/q”的形式表示,不含空格,p,q,均不超过10。

【输出描述】

输出只有一行,即最终结果的最简形式。若为分数,用”p/q”的形式表示。

【样例输入】

2
1/2
1/3

【样例输出】

5/6

【分析】

(1)有一个求最大公约数的函数来化简分数
(2)分子和分母要有通分的过程
(3)注意特殊条件 ,类似 31 只能写成3,不能写成3/1


【参考代码 1】

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#define N 1000010
using namespace std;
int a[20],b[20];
//求最大公约数的函数
int gcd(int a,int b)
{
   if(b==0)
       return a;
   return gcd(b,a%b);
}
int main()
{
   int n;
   int cnt=0;
   int fenzi=0,fenmu=1; //用fenzi表示最终的分子,fenmu表示分母,注意分母不能为0
   int divisor=0; //最大公约数
   char s[20];
   cin>>n;
   while(n--)
   {
       scanf("%d/%d",&a[cnt],&b[cnt]); //把n个数读入数组,a是表示分子,b是表示分母
       cnt++;
   }
   for(int i=0;i<cnt;i++)
       fenmu*=b[i];   //通分的过程
   for(int i=0;i<cnt;i++)
       fenzi=fenzi+fenmu*a[i]/b[i]; //计算分子和的过程
   divisor=gcd(fenmu,fenzi);//计算分子分母的最大公约数
   fenmu/=divisor;
   fenzi/=divisor;
   if(fenmu==1)
       cout<<fenzi<<endl;
   else
       cout<<fenzi<<"/"<<fenmu<<endl;
   return 0;
}


扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

【题解】2002-T2 选数

【题解】2002-T2 选数

【题目描述】已知n个整数x1,x2,……xn,以及一个整数K(K<n)。从n个整数中任选k个整数相加,可分别 得到一系列的和。例如当n=4, =3, 4个整数分别为3,7,12,1...

【题解】老王赛马

【题目描述】赛马是一古老的游戏,早在公元前四世纪的中国,处在诸侯割据的状态,历史上称为“战国时期”。在魏国作官的孙膑,因为受到同僚庞涓的迫害,被齐国使臣救出后,到达齐国国都。 赛马是当时最受...

【题解】Ride to Office

【题目描述】起点与终点相隔4500米。现Charley 需要从起点骑车到终点。但是,他有个习惯,沿途需要有人陪伴,即以相同的速度, 与另外一个人一起骑。而当他遇到以更快的速度骑车的人时,他会以相应的速...

迷宫

【题目描述】一天Extense在森林里探险的时候不小心走入了一个迷宫,迷宫可以看成是由n * n的格点组成,每个格点只有2种状态,.和#,前者表示可以通行后者表示不能通行。同时当Extense处在某个...

【题解】最小新整数

【问题描述】第⼀⾏有x个正整数a1,a2,..,ax,第⼆⾏有y个正整数b1,b2,...,by,第三⾏有z个正整数c1,c2,...,cz,假设第⼀⾏的x个正整数中的最⼤值为a、第⼆⾏的y个正整数中...

质数环

【题目描述】有一个整数n,把从1到n的数字无重复的排列成环,且使每相邻两个数(包括首尾)的和都为素数,称为素数环。为了简便起见,我们规定每个素数环都从1开始。例如,下面就是6的一个素数环。1 4 3...