当前位置:首页 > 题解目录 > 正文内容

学生分组

亿万年的星光5年前 (2021-01-28)题解目录7871

【题目描述】

有N组学生,给出初始时每组中的学生个数,再给出每组学生人数的上界R和下界L(LR),每次你可以在某组中选出一个学生把他安排到另外一组中,问最少要多少次才可以使N组学生的人数都在[L,R]中。

【输入描述】

第一行一个整数N,表示学生组数; n≤50

第二行N个整数,表示每组的学生个数;

第三行两个整数L,R表示下界和上界。

【输出描述】

一个数,表示最少的交换次数,如果不能满足题目条件输出

【样例输入】

2
10 20
10 15

【样例输出】

5

【分析】

1.首先可以考虑“-1”的情况,已知下届L和上届R,如果有n组人,那么人数的下限是n*L,上限是n*R,所有小于下限和大于上限的情况都不符合要求。

2.其次就是考虑最少要交换次数。把每组人数与上下界做比较,求出差值,取差值较大的那个。(因为考虑最少交换次数,目的在于交换成功,取最多的那次)

举例如下:
假设有5组数据分别是10 15 20 25 30

下限是18,上限是23

对于第一组数据10,需要调来18-10=8个

对于第二组数据15,需要调来18-15=3个

对于第三组数据20,数据在范围之内,不需要额外补或者减

对于第四组数据25,需要调走25-23=2个

对于第五组数据30,需要调走30-23=7个

那么一共需要调来11个,需要调走9个。把调走的全部给调来的,还差2个,也就是说这里要以数字最大的为准。

#include<bits/stdc++.h>
using namespace std;
int s[55]; //学生数组
int  n,l,r,sum,sum_l,sum_r;//定义学生组数,下届,上届,学生总人数
int main()
{
    cin>>n; //读入学生组数
    for(int i=0;i<n;i++)
    {
        cin>>s[i];
       sum+=s[i]; //算出总人数    
    }
    cin>>l>>r; // 读入下届和上届;
    if(sum>n*r || sum<n*l) //总人数小于下限或者大于上限表示不符合条件
    {
        cout<<"-1"<<endl;
        return 0;
    }
    else
    {
        for(int i=0;i<n;i++)
        {
            if(s[i]>r)
                sum_r += s[i]-r; //找到多少人需要调走
           if(s[i]<l)
               sum_l += l-s[i]; //找到有多少人需要调来
        }  
    }
     
    cout<<max(sum_l,sum_r); //输出较大的,即最少的次数
    return 0;
}


扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:
返回列表

上一篇:生日

下一篇:2的幂次方表示

相关文章

【题解】舞蹈机器人

题目描述在一个拥有无限大小的二维平面的原点处,有一个舞蹈机器人,这个机器人将在这个平面上跳舞。这个机器人每次可以向自己的前方移动一个单位的长度,由于它需要在移动的过程中跳舞,因此,舞蹈机器人每移动一次...

【题解】分糖果

【题目描述】小A在生日这天收到了哥哥送来的一盒糖果,这盒糖果共有M个,小A要把这盒糖果放到N个盘子中(允许有盘子不放),请问,有多少种不同的放法?请注意:数值相同,顺序不同,我们视为是相同的放法,比如...

八皇后问题

八皇后问题

【题目描述】八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行...

【题解】2019 T2 公交换乘

【题目描述】著名旅游城市 B 市为了鼓励大家采用公共交通方式出行,推出了一种地铁换乘公交车的优惠方案:1、在搭乘一次地铁后可以获得一张优惠票,有效期为 45 分钟,在有效期内可以消耗这张优惠...

【题解】 二维数组转置

说明输入一个n行m列的数组,输出他的转置,具体来说输出的第i行第j个数字,应是输入的第j行第i个数字。1≤n≤20000;1≤m≤20000;1≤n∗m≤20000;1≤a[i][j]≤1000特别注...

【题解】最大配对

题目描述      给出2个序列A={a[1],a[2],…,a[n]},B={b[1],b[2],…,b[n]},从A、B中各选出n个元素进行一一配对(可以不按照原来在...