当前位置:首页 > C++知识 > 正文内容

最小生成树(1)

亿万年的星光7个月前 (08-31)C++知识927

一、定义

一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。


二、概述

在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此的权重,若存在 T 为 E 的子集且为无循环图,使得联通所有结点的的 w(T) 最小,则此 T 为 G 的最小生成树

最小生成树其实是最小权重生成树的简称。

三、生成树


要求最小生成树,先来理解什么是生成树。

生成树的定义:一个连通图的生成树是一个极小的连通子图,它包含图中全部的n个顶点,但只有构成一棵树的n-1条边。

可以看到一个包含3个顶点的完全图可以产生3颗生成树。那么对于包含n个顶点的无向完全图最多包含n^n-2 个生成树。


生成树的特点:


  • 一个连通图可以有多个生成树;

  • 一个连通图的所有生成树都包含相同的顶点个数和边数;

  • 生成树当中不存在环;

  • 移除生成树中的任意一条边都会导致图的不连通, 生成树的边最少特性;

  • 在生成树中添加一条边会构成环。

  • 对于包含n个顶点的连通图,生成树包含n个顶点和n-1条边


四、最小生成树

所谓一个 带权图 的最小生成树,就是原图中边的权值最小的生成树 ,所谓最小是指边的权值之和小于或者等于其它生成树的边的权值之和。

比如上面这个,因为n个顶点的联通图,所以生成树包含n个顶点和n-1条边。

所以,很明显选3条边连起来肯定是1、2、3这个三个权重最小,那么1、2、3一共有两种选法,所以最小生成树有两个。













扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

C++中箭头指针的含义及用法

C++中箭头指针的含义及用法

0.前言c++中我们在一些程序中看到箭头 p—>stu 类似于这样的表示。今天就简单来解释一下点运算和箭头运算。1.点运算常见的点一般出现在结构体中,比如下面的代码:#include<io...

【初级篇】求最大公约数的方法

1.辗转相除法int gcd(int a,int b)  {       if(a%b==0...

STL入门——容器2:set

一、简单介绍    set是STL中一个很有用的容器,用来存储同一种数据类型的数据结构(可以称之为K的模型),基本功能与数组相似。set与数组不同的是,在set...

组合数的写法

前面我们写过 全排列和排列数 等。这篇文章。我们写一下组合数。例题:从n个数中,选出m个,一共有多少种不同的选法?这是一道典型的组合数公式。我们直接用dfs公式肯定会出现重复的。#include<...

指针(三):指针与函数

1.交换的例子#include<iostream> #include<cstdio> #include<cstring> using namespa...

【数论】杨辉三角

【数论】杨辉三角

一、起源 杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年。杨辉三角...