当前位置:首页 > C++知识 > 正文内容

【数论】常见的距离度量方法

亿万年的星光3年前 (2023-01-29)C++知识2149

一、欧式距离

欧式距离(Eucliden Metric,也是欧几里得度量)是一个通常采用的距离定义,旨在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点距离)。

在二维和三维空间中的欧氏距离就是两点之间的实际距离。

例如:对于二维平面上的两点p(x1,y1)与p(x2,y2)间的欧式距离公式为:

同理,对于三维平面上两点p(x1,y1,z1)与p(x2,y2,z2)间的欧式距离公式为:

欧式距离是距离算法中最常用的方式,日常生活中的大部分距离都可以通过欧式距离进行计算。


二、余弦相似度


余弦相似度经常被用作抵消高维欧式距离问题。余弦相似度是指两个向量夹角的余弦。如果将向量归一化为长度均为 1 的向量,则向量的点积也相同。

两个方向完全相同的向量的余弦相似度为 1,而两个彼此相对的向量的余弦相似度为 - 1。注意,它们的大小并不重要,因为这是在方向上的度量。


三、汉明距离

汉明距离是两个向量之间不同值的个数。它通常用于比较两个相同长度的二进制字符串。它还可以用于字符串,通过计算不同字符的数量来比较它们之间的相似程度。

缺点:当两个向量长度不相等时,汉明距离使用起来很麻烦。当幅度是重要指标时,建议不要使用此距离指标。


四、曼哈顿距离

曼哈顿距离通常称为出租车距离或城市街区距离,用来计算实值向量之间的距离。想象一下均匀网格棋盘上的物体,如果它们只能移动直角,曼哈顿距离是指两个向量之间的距离,在计算距离时不涉及对角线移动。

缺点:尽管曼哈顿距离在高维数据中似乎可以工作,但它比欧式距离直观性差,尤其是在高维数据中使用时。此外,由于它可能不是最短路径,有可能比欧氏距离给出一个更高的距离值。


五、切比雪夫距离

切比雪夫距离定义为两个向量在任意坐标维度上的最大差值。换句话说,它就是沿着一个轴的最大距离。切比雪夫距离通常被称为棋盘距离,因为国际象棋的国王从一个方格到另一个方格的最小步数等于切比雪夫距离。

缺点:切比雪夫距离通常用于特定的用例,这使得它很难像欧氏距离或余弦相似度那样作为通用的距离度量。因此,在确定适合用例时才使用它。



扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

排序算法中的一些分类

排序算法中的一些分类

一、比较和非比较的排序二、时间复杂度和稳定性如何界定一个排序算法是否是稳定的?假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=...

字符串的输入输出汇总

做字符串的题目的时候,经常会遇到输入输出不对的情况,这篇文章就简单总结一下字符串常见的输入输出。2.cin基本操作:#include<iostream> #include<cstd...

图的访问与存储—临接表

图的访问与存储—临接表

        在图论中,邻接表(Adjacency List) 是表示图(包括无向图、有向图、带权图)的一种高效数据结构,核心思想是为图中的每个顶点...

【题解】采药的最短路径

【题目描述】少年李逍遥的婶婶病了,王小虎介绍他去一趟仙灵岛,向仙女姐姐要仙丹救婶婶。孝顺的李逍遥闯进了仙灵岛,克服了千险万难来到岛的中心,发现仙药摆在了迷阵的深处。迷阵由M×N个方格组成,有的方格内有...

质数(素数)的判断

一、定义法// 1 定义法(除了1和他本身之外,没有任何一个数能被整除)(试除法) bool is_prime3(unsigned long lon...

混合背包

1.问题定义:混合背包问题是经典背包问题的一个变种,其中物品的类型不单一,而是混合了以下三种类型:01 背包物品:每种物品最多只能选一次。完全背包物品:每种物品可以选择无限次。多重背包物品:每种物品有...