当前位置:首页 > C++知识 > 正文内容

【数论】常见的距离度量方法

亿万年的星光3年前 (2023-01-29)C++知识2108

一、欧式距离

欧式距离(Eucliden Metric,也是欧几里得度量)是一个通常采用的距离定义,旨在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点距离)。

在二维和三维空间中的欧氏距离就是两点之间的实际距离。

例如:对于二维平面上的两点p(x1,y1)与p(x2,y2)间的欧式距离公式为:

同理,对于三维平面上两点p(x1,y1,z1)与p(x2,y2,z2)间的欧式距离公式为:

欧式距离是距离算法中最常用的方式,日常生活中的大部分距离都可以通过欧式距离进行计算。


二、余弦相似度


余弦相似度经常被用作抵消高维欧式距离问题。余弦相似度是指两个向量夹角的余弦。如果将向量归一化为长度均为 1 的向量,则向量的点积也相同。

两个方向完全相同的向量的余弦相似度为 1,而两个彼此相对的向量的余弦相似度为 - 1。注意,它们的大小并不重要,因为这是在方向上的度量。


三、汉明距离

汉明距离是两个向量之间不同值的个数。它通常用于比较两个相同长度的二进制字符串。它还可以用于字符串,通过计算不同字符的数量来比较它们之间的相似程度。

缺点:当两个向量长度不相等时,汉明距离使用起来很麻烦。当幅度是重要指标时,建议不要使用此距离指标。


四、曼哈顿距离

曼哈顿距离通常称为出租车距离或城市街区距离,用来计算实值向量之间的距离。想象一下均匀网格棋盘上的物体,如果它们只能移动直角,曼哈顿距离是指两个向量之间的距离,在计算距离时不涉及对角线移动。

缺点:尽管曼哈顿距离在高维数据中似乎可以工作,但它比欧式距离直观性差,尤其是在高维数据中使用时。此外,由于它可能不是最短路径,有可能比欧氏距离给出一个更高的距离值。


五、切比雪夫距离

切比雪夫距离定义为两个向量在任意坐标维度上的最大差值。换句话说,它就是沿着一个轴的最大距离。切比雪夫距离通常被称为棋盘距离,因为国际象棋的国王从一个方格到另一个方格的最小步数等于切比雪夫距离。

缺点:切比雪夫距离通常用于特定的用例,这使得它很难像欧氏距离或余弦相似度那样作为通用的距离度量。因此,在确定适合用例时才使用它。



扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

质数(素数)的判断

一、定义法// 1 定义法(除了1和他本身之外,没有任何一个数能被整除)(试除法) bool is_prime3(unsigned long lon...

【初级篇】函数(一)

【初级篇】函数(一)

0.函数的引入为什么要用函数呢?比较官方的说法是,过程的复用,你的一段逻辑,你有一段逻辑不断的在复用,就封装成函数去调用它。通俗的说法就是,把重复的过程集中到一块。例如,大家都学过如何求正方形的面积,...

【题解】小X玩游戏

【题目描述】小X喜欢玩游戏。  这天,小X觉得传统的游戏都玩腻了,自己随手在草稿纸上画了一行N个格子作为棋盘, 制定了如下规则:格子从左到右依次编号为1到N,玩家初始位于格子1,初...

【数论】同余定理与同余方程

定义同余定理是数论中的一个重要概念。它的定义是这样的:给定一个整数m,如果两个整数a和b满足(a-b)能够被m整除,即(a-b)/m 得到一个整数,那么就成整数a和b对模m同余,记作a≡b(mod m...

C++中双冒号(::)的用法

一、作用域符号前面一般是类名称,后面一般是该类的成员名称,C++为例避免不同的类有名称相同的成员而采用作用域的方式进行区分如:A,B表示两个类,在A,B中都有成员member。那么A::member就...

字符串的输入输出汇总

做字符串的题目的时候,经常会遇到输入输出不对的情况,这篇文章就简单总结一下字符串常见的输入输出。2.cin基本操作:#include<iostream> #include<cstd...