当前位置:首页 > C++目录 > 正文内容

【数论】常见的距离度量方法

亿万年的星光3年前 (2023-01-29)C++目录2353

一、欧式距离

欧式距离(Eucliden Metric,也是欧几里得度量)是一个通常采用的距离定义,旨在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点距离)。

在二维和三维空间中的欧氏距离就是两点之间的实际距离。

例如:对于二维平面上的两点p(x1,y1)与p(x2,y2)间的欧式距离公式为:

同理,对于三维平面上两点p(x1,y1,z1)与p(x2,y2,z2)间的欧式距离公式为:

欧式距离是距离算法中最常用的方式,日常生活中的大部分距离都可以通过欧式距离进行计算。


二、余弦相似度


余弦相似度经常被用作抵消高维欧式距离问题。余弦相似度是指两个向量夹角的余弦。如果将向量归一化为长度均为 1 的向量,则向量的点积也相同。

两个方向完全相同的向量的余弦相似度为 1,而两个彼此相对的向量的余弦相似度为 - 1。注意,它们的大小并不重要,因为这是在方向上的度量。


三、汉明距离

汉明距离是两个向量之间不同值的个数。它通常用于比较两个相同长度的二进制字符串。它还可以用于字符串,通过计算不同字符的数量来比较它们之间的相似程度。

缺点:当两个向量长度不相等时,汉明距离使用起来很麻烦。当幅度是重要指标时,建议不要使用此距离指标。


四、曼哈顿距离

曼哈顿距离通常称为出租车距离或城市街区距离,用来计算实值向量之间的距离。想象一下均匀网格棋盘上的物体,如果它们只能移动直角,曼哈顿距离是指两个向量之间的距离,在计算距离时不涉及对角线移动。

缺点:尽管曼哈顿距离在高维数据中似乎可以工作,但它比欧式距离直观性差,尤其是在高维数据中使用时。此外,由于它可能不是最短路径,有可能比欧氏距离给出一个更高的距离值。


五、切比雪夫距离

切比雪夫距离定义为两个向量在任意坐标维度上的最大差值。换句话说,它就是沿着一个轴的最大距离。切比雪夫距离通常被称为棋盘距离,因为国际象棋的国王从一个方格到另一个方格的最小步数等于切比雪夫距离。

缺点:切比雪夫距离通常用于特定的用例,这使得它很难像欧氏距离或余弦相似度那样作为通用的距离度量。因此,在确定适合用例时才使用它。



    扫描二维码推送至手机访问。

    版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

    分享给朋友:

    相关文章

    CSP-J2021年普及组复赛T4——小熊的果篮

    【题目描述】    小熊的水果店里摆放着一排 n 个水果。每个水果只可能是苹果或桔子,从左到右依 次用正整数 1、2、3、……、n 编号。连续排在一起的同一种...

    完全背包问题

    1. 问题定义完全背包问题是经典的动态规划问题之一。它的基本描述如下:有一个容量为 V 的背包。有 N 种物品,每种物品有无限个可用。第 i ...

    【数论】龟速乘

    【数论】龟速乘

    我们前面一篇文章学习了快速幂。它可以解决两类问题:a^b,(a^b)%c对于第一类,我们可以使用递归法或者迭代法可以求出,为了计算的快,我们可以引入位运算操作,但是目前来看,无论怎么优化都不能超过lo...

    字符串的输入输出汇总

    做字符串的题目的时候,经常会遇到输入输出不对的情况,这篇文章就简单总结一下字符串常见的输入输出。2.cin基本操作:#include<iostream> #include<cstd...

    最小生成树—基本概念

    一、最小生成树核心概念1. 基本定义一个带权无向连通图的最小生成树,是指从该图中选择若干条边,构成一个包含图中所有顶点的树结构(无环、连通),且所有选中边的权值之和最小。2. 关键性质生成树的本质:包...

    C++链表结构——单链表

    0.前言存储方式分为顺序存储结构和链式存储结构。顺序存储结构的优缺点:优点:可以通过一个简单的公式随机存取表中的任一元素,逻辑关系上相邻的两个元素在物理位置上也是相邻的,且很容易找到前驱跟后继元素。缺...