当前位置:首页 > C++知识 > 正文内容

【贪心】区间选点

亿万年的星光4年前 (2021-02-02)C++知识1993

【题目描述】

数轴上有n个闭区间[ai, bi],取尽量少的点,使得每个区间内都至少有一个点。(不同区间内含的点可以是同一个,1<=n<=10000,1<=ai<=bi<=10^9)。求最少点的个数。

【输入】

n

n项工作的开始与结束时间

【输出】

最多参与的工作项数

【输入样例1】

Bash
4
3 13
6 20
4 14
1 10

【输出样例1】

1



【输入样例2】

Bash
3
4 7
6 8
11 20

【输出样例2】

2


【题目原型分析】

参考下图模型:

                                    

或者下图这种模型:

                                        


关于至少有一个点的解释:如果区间i内已经有一个点被取到,则称此区间已经被满足(闭区间)。

【解题思路】

首先考虑如果两个区间一个区间包含另外一个,小区间内的点一定在大区间内,但是大区间内的点不一定在小区间内。所以此时,只需要考虑较小的区间。当两个区间不包含但有重叠部分时,选择一个点在b_i更小的区间的最末端,则该点一定包含在两个区间内。我们的对不同区间的排序方式(即贪心准则)是按b_i从小到大i排序所有的区间,当b_i相同时则按照a_i从大到小进行排序。这样排序以后即使有包含的区间,小区间也一定会排在前面。接下来取第一个区间的最后一个点,然后向后查找第一个不包含该点的区间,取该区间的最后一个点,以此类推直到结束。

总结:

首先考虑区间包含的情况,当小区间被满足时大区间一定被满足。所以我们应当优先选取小区间中的点,从而使大区间不用考虑。按照上面的方式排序后,如果出现区间包含的情况,小区间一定在大区间里。所以此情况下我们会优先选择小区间。”


【参考代码】

#include<bits/stdc++.h>
using namespace std;
const int maxn=10010;
struct Node{
	int begin; //开始的点 
	int end; //结束的点 
}node[maxn];
bool cmp(Node a,Node b)
{
    return a.end<b.end;  //由小到大排序 
}
int main()
{
    int n,ans;
    while(scanf("%d",&n))
    {
        for(int i=0;i<n;++i)//输入区间 并处理
        {
            scanf("%d %d",&node[i].begin,&node[i].end);
        }
        sort(node,node+n,cmp);//将区间按右端点排序,右端点小的在前面
        ans=0;
        int position=-1;//pos代表第一个区间选取的点
        for(int i=0;i<n;++i)
        {
            if(node[i].begin>position)
            {
                position=node[i].end;
                ++ans;
            }
        }
        printf("%d\n",ans);
    }
}



其次,用队列的方式也可以做


#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
bool cmp (pair<int, int> &a,pair<int, int> &b){
    return a.second<b.second ? true:a.second==b.second&&a.first>b.first;
}
int main(int argc, const char * argv[]) {
    int n;cin>>n;
    vector<pair<int, int> > v;
    int x,y;
    while (n--) {
        cin>>x>>y;
        v.push_back(pair<int, int>(x,y));
    }
    sort(v.begin(), v.end(), cmp);
    int cur_point=v.front().second;
    int num=1;
    for (int i=1; i<v.size(); i++) {
        if(v[i].first>cur_point)
        {
            cur_point=v[i].second;
            num++;
        }
    }
    cout<<num<<endl;
    return 0;
}



【例题——>另一种思路】

【题目描述】

某条街道上有很多个广告位,一个公司在这条街上投放广告,因为不同地方的人流量是不同的,所以公司先做了个调查,共调查了N个人,知道了他们每个人每天在街上走的路段。现在要求找到一些广告位,使得广告位数量最少,但是要求调查到的那些每人至少看到广告K次。如果有人走的路段广告位少于K个,那么要求他在这个路段的所有广告位都要看到。输出要求的广告位的位置。


区间的右端点即可。择区间的右端点即可。


分析: 典型的区间选点问题。


1.先按照区间右端点从小到大的顺序排列,右端点相等,按左端点从大到小的顺序。


2.循环遍历每个区间,把访问过的位置i即放了广告牌的位置用vis【i】设为1


①若区间长度<=K,则区间内的每个位置全部要放广告牌,从区间左端点->右端点挨个遍历,未访问(vis【i】==0)的放置广告牌,计数器cnt++


②若区间长度>K,则区间内只要放置K个广告牌即可,先从左端点->右端点挨个遍历,计算已经放置的广告牌数num,得到的num>=K,则不用再放,继续下一个区间,小于K,则偏向右方的位置优先放置广告牌,即从右端点-->左端点遍历,未访问的放广告牌

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define de 10000
using namespace std;
 
int K,n;      //K表示最少看到的广告牌数,n为人的个数
struct Node
{
    int left,right;
    bool operator<(Node p)        //自定义比较函数
    {
        if(right!=p.right)        //按照区间右端点从小到大的顺序排序,相等按左端点从大到小的顺序排序
            return right<p.right; 
        else return left>p.left;
    }
};
Node p[1005];
int vis[20005];
 
 
void solve()
{
     int i,j,cnt=0,num;
     for(i=0;i<n;i++)
     {
         if((p[i].right-p[i].left+1<=K))          //如果区间长度小于K,则区间内所有数都要放广告牌
         {
             for(j=p[i].left;j<=p[i].right;j++)   //从区间左端点遍历到右端点,未访问过的+1,设为访问过
             {
                 if(vis[j]==0)
                 {
                     vis[j]=1;
                     cnt++;
                 }
             }
         }
         else                                     //区间长度大于K 
         {
             num=0;                             
             for(j=p[i].left;j<=p[i].right;j++)   //先从区间左端点到右端点,计算已经放的广告牌数num
             {
                 if(vis[j]==1)
                    num++;
             }
             if(num<K)                            //num不够规定的K个
             for(j=p[i].right;j>=p[i].left;j--)   //从区间右端点到左端点,没访问的放广告牌,当num==k时跳出
             {
                 if(vis[j]==0)
                 {
                     num++;
                     cnt++;
                     vis[j]=1;
                 }
                 if(num>=K) break;
             }
         }
     }
     cout<<cnt<<endl;
     for(i=0;i<20005;i++)                         
        if(vis[i]==1)
         cout<<i-10000<<endl;                     //注意输出的是i-10000
 
}
 
 
int main()
{
    int i,j,m,left,right;
    cin>>m;
 
    for(i=0;i<m;i++)
    {
        cin>>K>>n;
        for(j=0;j<n;j++)
        {
            cin>>left>>right;
            if(left>right)
            {
                left=left+right;
                right=left-right;
                left=left-right;
            }
            p[j].left=left+de;                 //+10000保证区间内的数都是整数,vis便于访问
            p[j].right=right+de;
        }
        sort(p,p+n);            
        solve();
        memset(vis,0,sizeof(vis));
        if(i!=m-1) cout<<endl;
    }
    return 0;
}


扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

【数论】常见的距离度量方法

【数论】常见的距离度量方法

一、欧式距离欧式距离(Eucliden Metric,也是欧几里得度量)是一个通常采用的距离定义,旨在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点距离)。在二维和三维空间中的欧氏距...

【题解】采药的最短路径

【题目描述】少年李逍遥的婶婶病了,王小虎介绍他去一趟仙灵岛,向仙女姐姐要仙丹救婶婶。孝顺的李逍遥闯进了仙灵岛,克服了千险万难来到岛的中心,发现仙药摆在了迷阵的深处。迷阵由M×N个方格组成,有的方格内有...

【入门篇】>>> DEVC++下载、安装、简单使用

【入门篇】>>> DEVC++下载、安装、简单使用

什么是DEVC++    DEVC++是一款编程工具,是一个Windows环境下的一个适合于初学者使用的轻量级C/C++ 集成开发环境(IDE),它是一款自由软件,遵守G...

【数据结构】并查集1

【数据结构】并查集1

1.引入    对于一个集合S={a1, a2, …, an-1, an},我们还可以对集合S进一步划分: S1,S2,…,Sm-1,Sm,我们希望能够快速确定...

数组的不确定长度输入

0.前言我们在学习数组的时候一般都会告诉你数组的长度,然后for循环去遍历。但是有一类问题是没有n的,也就是没有告诉长度的。1.方法第一种:(数组)#include<iostream>...

信息学奥赛中文件流的写法

信息学奥赛中文件流的写法

头文件#include<cstdio>也可以用万能头格式如下:int main(){ freopen("xxxx.in","r",st...